MATHEMATICS

MPC4

Unit Pure Core 4

Wednesday 21 January 20091.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=4 x^{3}-7 x-3$.
(i) Find $f(-1)$.
(ii) Use the Factor Theorem to show that $2 x+1$ is a factor of $\mathrm{f}(x)$.
(iii) Simplify the algebraic fraction $\frac{4 x^{3}-7 x-3}{2 x^{2}+3 x+1}$.
(b) The polynomial $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=4 x^{3}-7 x+d$. When $\mathrm{g}(x)$ is divided by $2 x+1$, the remainder is 2 . Find the value of d.

2 (a) Express $\sin x-3 \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your value of α in radians to two decimal places.
(b) Hence:
(i) write down the minimum value of $\sin x-3 \cos x$;
(1 mark)
(ii) find the value of x in the interval $0<x<2 \pi$ at which this minimum value occurs, giving your value of x in radians to two decimal places.
(2 marks)

3 (a) (i) Express $\frac{2 x+7}{x+2}$ in the form $A+\frac{B}{x+2}$, where A and B are integers.
(ii) Hence find $\int \frac{2 x+7}{x+2} \mathrm{~d} x$.
(2 marks)
(b) (i) Express $\frac{28+4 x^{2}}{(1+3 x)(5-x)^{2}}$ in the form $\frac{P}{1+3 x}+\frac{Q}{5-x}+\frac{R}{(5-x)^{2}}$, where P, Q and R are constants.
(ii) Hence find $\int \frac{28+4 x^{2}}{(1+3 x)(5-x)^{2}} \mathrm{~d} x$.

4 (a) (i) Find the binomial expansion of $(1-x)^{\frac{1}{2}}$ up to and including the term in x^{2}.
(2 marks)
(ii) Hence obtain the binomial expansion of $\sqrt{4-x}$ up to and including the term in x^{2}.
(b) Use your answer to part (a)(ii) to find an approximate value for $\sqrt{3}$. Give your answer to three decimal places.

5 (a) Express $\sin 2 x$ in terms of $\sin x$ and $\cos x$.
(b) Solve the equation

$$
5 \sin 2 x+3 \cos x=0
$$

giving all solutions in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$ to the nearest 0.1°, where appropriate.
(c) Given that $\sin 2 x+\cos 2 x=1+\sin x$ and $\sin x \neq 0$, show that $2(\cos x-\sin x)=1$.

6 A curve is defined by the equation $x^{2} y+y^{3}=2 x+1$.
(a) Find the gradient of the curve at the point $(2,1)$.
(b) Show that the x-coordinate of any stationary point on this curve satisfies the equation

$$
\begin{equation*}
\frac{1}{x^{3}}=x+1 \tag{4marks}
\end{equation*}
$$

Turn over for the next question

7 (a) A differential equation is given by $\frac{\mathrm{d} x}{\mathrm{~d} t}=-k t \mathrm{e}^{\frac{1}{2} x}$, where k is a positive constant.
(i) Solve the differential equation.
(ii) Hence, given that $x=6$ when $t=0$, show that $x=-2 \ln \left(\frac{k t^{2}}{4}+\mathrm{e}^{-3}\right)$.
(b) The population of a colony of insects is decreasing according to the model $\frac{\mathrm{d} x}{\mathrm{~d} t}=-k t \mathrm{e}^{\frac{1}{2} x}$, where x thousands is the number of insects in the colony after time t minutes. Initially, there were 6000 insects in the colony.

Given that $k=0.004$, find:
(i) the population of the colony after 10 minutes, giving your answer to the nearest hundred;
(2 marks)
(ii) the time after which there will be no insects left in the colony, giving your answer to the nearest 0.1 of a minute.
(2 marks)

8 The points A and B have coordinates $(2,1,-1)$ and $(3,1,-2)$ respectively. The angle $O B A$ is θ, where O is the origin.
(a) (i) Find the vector $\overrightarrow{A B}$.
(ii) Show that $\cos \theta=\frac{5}{2 \sqrt{7}}$.
(b) The point C is such that $\overrightarrow{O C}=2 \overrightarrow{O B}$. The line l is parallel to $\overrightarrow{A B}$ and passes through the point C. Find a vector equation of l.
(2 marks)
(c) The point D lies on l such that angle $O D C=90^{\circ}$. Find the coordinates of D.

END OF QUESTIONS

